Activation of soluble guanylyl cyclase at the leading edge during Dictyostelium chemotaxis.
نویسندگان
چکیده
Dictyostelium contains two guanylyl cyclases, GCA, a 12-transmembrane enzyme, and sGC, a homologue of mammalian soluble adenylyl cyclase. sGC provides nearly all chemoattractant-stimulated cGMP formation and is essential for efficient chemotaxis toward cAMP. We show that in resting cells the major fraction of the sGC-GFP fusion protein localizes to the cytosol, and a small fraction is associated to the cell cortex. With the artificial substrate Mn2+/GTP, sGC activity and protein exhibit a similar distribution between soluble and particulate fraction of cell lysates. However, with the physiological substrate Mg2+/GTP, sGC in the cytosol is nearly inactive, whereas the particulate enzyme shows high enzyme activity. Reconstitution experiments reveal that inactive cytosolic sGC acquires catalytic activity with Mg2+/GTP upon association to the membrane. Stimulation of cells with cAMP results in a twofold increase of membrane-localized sGC-GFP, which is accompanied by an increase of the membrane-associated guanylyl cyclase activity. In a cAMP gradient, sGC-GFP localizes to the anterior cell cortex, suggesting that in chemotacting cells, sGC is activated at the leading edge of the cell.
منابع مشابه
The Dictyostelium MAP kinase kinase DdMEK1 regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase.
We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that ...
متن کاملFour key signaling pathways mediating chemotaxis in Dictyostelium discoideum
Chemotaxis is the ability of cells to move in the direction of an external gradient of signaling molecules. Cells are guided by actin-filled protrusions in the front, whereas myosin filaments retract the rear of the cell. Previous work demonstrated that chemotaxis of unpolarized amoeboid Dictyostelium discoideum cells is mediated by two parallel pathways, phosphoinositide-3-kinase (PI3K) and ph...
متن کاملChemotactic antagonists of cAMP inhibit Dictyostelium phospholipase C.
In Dictyostelium discoideum extracellular cAMP induces chemotaxis via a transmembrane signal transduction cascade consisting of surface cAMP receptors, G-proteins and effector enzymes including adenylyl cyclase, guanylyl cyclase and phospholipase C. Previously it was demonstrated that some cAMP derivatives such as 3'-deoxy-3'-aminoadenosine 3':5'-monophosphate (3'NH-cAMP) bind to the receptor a...
متن کاملA novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium.
We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gen...
متن کاملRegulation of guanylyl cyclase by a cGMP-binding protein during chemotaxis in Dictyostelium discoideum.
Chemoattractants transiently activate guanylyl cyclase in Dictyostelium discoideum cells. Mutant analysis demonstrates that the produced cGMP plays an essential role in chemotactic signal transduction, controlling the actomyosin-dependent motive force. Guanylyl cyclase activity is associated with the particulate fraction of a cell homogenate. The addition of the cytosol stimulates guanylyl cycl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2005